China OEM UV Resistance Medical Equipment Plastic Enclosure Plastic Injection Molded Parts injection molded part design

Product Description

PRODUCT PARAMETERS

Item Name UV resistance Medical Equipment Plastic Enclosure Plastic Injection Molded Parts

Mould Core/Cavity

DIN2312,2738,2344,718,S136,8407,NAK80,SKD61,P20, P20HH, H13, 420ss etc.

Hardness of steel

33-38HRC prehard, 46~56 HRC hardened

Mould Standard

HASCO,DME,MEUSBURGER,JIS,CHINA LKM Standard

Mould Base

LKM&Hasco&DME standard (A,B plate 1730,2311,2312,1050,P20 )

Cavity

Single/Family/Multi

Runner

Hot/Cold Runner

Mould Size

150*150mm Min, 3000*2500mm Max

Surface of Mould

EDM VDI/ High Polish&Texture

Plastic material

PP, PC, PS, PE, PET, POM, PA, PU, PVC, ABS, HIPS, PMMA, Nylon, and with GF, etc.

Mould Life

Prototype 1000-25,000; preproduction 50,000-10,0000; High production 300,000-1,000,000 shots based on Volume requirements

Specification

Depends on the customer’s requirements.

Trade terms

FOB HangZhou, EXW, CIF

Export to

Europe countries,USA,Mexico,Australia ,Middle-east ,Asia etc

Mold hot runner

DME, HASCO, YUDO, Mold-Masters, HRS, Synventive, etc, or per customer requirement

Mold gate type

point gate, side gate, sub gate, tunnel gate, banana gate, direct gate, tab gate, hot runner valve gate, hot runner to cold runner, etc.

Lead time 1st Trial

20-45Days based on different molds

Outside package

Standard wooden cases or as your requirement

Inner package

Stretch waterproof film & Each Mold painted, anti-rust oil.3. Spare parts together with the mold shipment. 4. Vaccum package

CUSTOM SOLUTION

 MANUFACTURING TECHNIQUE

ABOUT US

CERTIFICATE

SHIPPING & PAYMENT

FAQ

Q1: What is your company’s main product?
A: Our company is specialized in injection molding moulds and injection plastic products. We can customize all kinds of injection plastic products according to your requirements or 3D drawing.
 
Q2: How can I get the samples to check the quality?
A: 1) You can come to have the mould test directly. 2) We could send samples & mould running video to you.
 
Q3: Can you make multi-cavity molds?
A: Yes, we are capable of making molds in 16, 24, 48, and 64 cavities.
 
Q4: What certificates are you qualified for?
A: We are qualified in ISO9001, and we have a system for TS16949.
 
Q5: How do you make our business a long-term and good relationship?
A:1. We keep good quality, on-time delivery, and competitive price to ensure our customers benefit from the best quality products  2. We value each customer, no matter where they come from, or how big the order they place.
 
Q6: I have an idea for a new product, but don’t know if it can be manufactured. Can you help?
A: Yes! We are always happy to work with potential customers to evaluate the technical feasibility of your idea or design and we can advise on materials tooling and likely set-up costs.

Welcome you for your inquiry and product information. We will reply to you as soon as possible.

aNUmmFACTURING TECHN

PRODUCT PARAMEERS

PT PAAMENT

Shaping Mode: Injection Mould
Surface Finish Process: Polishing
Mould Cavity: Multi Cavity
Plastic Material: ABS
Process Combination Type: Single-Process Mode
Application: Car, Household Appliances, Furniture, Commodity, Electronic, Home Use, Hardware
Samples:
US$ 10.00/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Injection molded partt

What Is Injection Moulding?

Injection molding is a process of producing precision-molded parts by fusing raw plastics and guiding them into a mold. The main components of an injection mold are a hopper, barrel, and reciprocating screw. Before injection, the raw plastics are mixed with coloring pigments and reinforcing additives.

Characteristics of injection molded parts

Injection molding is the process of manufacturing plastic parts. It uses thermoplastic, thermoset, or elastomers to manufacture components. The range of materials is enormous and includes tens of thousands of different polymers. They are blended with other materials and alloys to produce a wide range of properties. Designers select the appropriate materials for the job based on the properties and functions desired in the finished part. During the mold design process, mold materials must be carefully chosen, as different materials require different molding parameters.
Injection molding requires precise tolerances of the temperature and strain levels. The maximum strain level is about 0.15 percent. It is possible to adjust these parameters to meet the requirements of an injection molding project. The resulting products can be easily checked for quality by measuring the strain and temperature of the mold inserts in real time.
Injection molding is known for its laminar flow of the polymer. However, there is still a possibility for side-to-side thermal variations in the part forming cavity. This is illustrated in FIG. 4. The part has high and low sheared areas; the higher sheared areas flow on the bottom side of the part, while the lower sheared areas flow on the top side.
Injection molding is used to make many different types of plastic parts, from small parts to entire body panels of a car. These parts can be made from a variety of different materials, such as polypropylene for toys and ABS for consumer electronics. They can also be made from metal, such as aluminum or steel.
The melting temperature of plastic parts must be appropriate for the project’s specifications. The mold should be large enough to produce the parts desired. This will minimize the impact of uneven shrinkage on the product’s dimensional accuracy. In addition to the temperature, a mold must be designed with the material’s properties in mind.

Tooling fabrication

Injection molded parttInjection molded parts are produced using molds. This process is a complex process that requires customization to ensure proper fit and function. The main component of a mold is the base, which holds the cavities, ejectors and cooling lines. The size and position of these components are crucial to the production of quality parts. Incorrectly sized vents can cause trapped air to enter the part during the molding process. This can lead to gas bubbles, burn marks, and poor part quality.
The material used for tooling fabrication is usually H-13 tool steel. This steel is suitable for injection molded parts as it has a low elongation value. The material used to fabricate tooling for injection molded parts typically has a high yield strength. The material used for injection moulding tooling is typically 420 stainless steel or H-13 tool steel. These materials are suitable for most injection molding processes and have comparable yield strength compared to wrought or MIM parts.
Another important part of tooling fabrication is the design of the mold. It is important to design the mold with a draft angle, as this will make ejection easier and reduce costs. A draft angle of 5o is recommended when designing a tall feature. Choosing a draft angle is essential to ensuring that the plastic part is free from air bubbles after injection molding.
Injection moulding tooling costs can account for as much as 15% of the cost of an injection moulded part. With innovation in mould materials and design, tooling fabrication can be more efficient and cost-effective.

Surface finishes on injection molded parts

Injection molded parttSurface finishes on injection molded parts can have a variety of effects on the part’s appearance and performance. Different materials lend themselves to different kinds of surface finishes, with some plastics better suited for smooth, glossy finishes than others. The type of surface finish is also affected by several factors, including the speed of injection and the melt temperature. Faster injection speeds help improve the quality of plastic finishes by decreasing the visibility of weld lines and improving the overall appearance of the parts.
For a smooth plastic surface finish, some companies require a high level of roughness on the part. Others may prefer a more rough look, but both options can have their benefits. The type of surface finish chosen will depend on the part’s purpose and intended application. For example, a glossy plastic finish may be preferred for a cosmetic part, while a rougher finish may be better suited for a mechanical part that must be tough and cost-effective.
Surface finishes on injection molded parts are often customized to match the application. For example, some parts require a rough surface finish because they require a greater amount of friction. These parts may require a sandblasting process to achieve the desired texture. Other processes can also be used to control plastic texture.
The type of surface finish depends on the materials used, as well as the design and shape of the part. The type of material used, additives, and temperature also have an impact on the surface finish. It is also important to consider surface finishes early in the design process.

Importance of a secondary operation to improve accuracy

While most injection molded parts do not require secondary operations, some components do require this type of processing. The surface finish of a component will determine how well it functions and what other secondary operations are necessary. Depending on the part’s function, a smooth or textured surface may be appropriate. Additionally, some parts may require surface preparation before applying adhesives, so an accurate surface finish can make all the difference. In order to achieve the desired finish, the injection molder should have experience molding different materials. He or she should also have the knowledge of how to simulate the flow of a mold. Also, experienced molders know how to mix materials to achieve the desired color, avoiding the need for secondary painting processes.
Injection molding is a complex process that requires precision and accuracy. The optimal temperature of the melted plastic must be chosen, as well as the mold itself. The mold must also be designed for the correct flow of plastic. In addition, it must be made of the best thermoplastic material for the part’s design. Finally, the correct time must be allowed for the part to be solid before it is ejected. Many of these issues can be overcome with specialized tooling that is customized to the part’s design.
Injection molding offers the opportunity to make complex parts at low cost. It also allows manufacturers to make parts with complicated geometries and multiple functions.
China OEM UV Resistance Medical Equipment Plastic Enclosure Plastic Injection Molded Parts   injection molded part designChina OEM UV Resistance Medical Equipment Plastic Enclosure Plastic Injection Molded Parts   injection molded part design
editor by CX